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The longitudinal coupling impedance of a cylindrical beam pipe for arbitrary relativisticg0 and mode
frequency is obtained analytically for finite wall conductivity and finite wall thickness. Closed form expres-
sions for the electromagnetic fields excited by a beam perturbation are derived analytically. General expres-
sions for the resistive-wall impedance in the presence of a metallic shield and for the rf shielding effectiveness
of the beam pipe have been obtained and then compared with approximate expressions. The results are applied
to the GSI synchrotron SIS, where the thickness of the vacuum chamber in the dipole magnets is much smaller
than the skin depth at injection energy.
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I. INTRODUCTION

The concept of coupling impedance in accelerators was
introduced for studying the instabilities in the ISR at CERN
f1g. For the design of accelerators it is desired to reduce the
coupling impedance of the beam to its environment in order
to prevent beam instabilities. The longitudinal coupling im-
pedance, which includes the space-charge and resistive-wall
impedances, is an important physical quantity for under-
standing and modeling of the longitudinal dynamics of
charged particle beams and the corresponding longitudinal
beam instabilities. A beam of charged particles can excite
electromagnetic fields in its environment and periodic exci-
tations can occur depending on the coupling of the beam to
its environment at a particular frequency. These excitations
can perturb the beam dynamics and lead to beam instabilities
f2–5g.

In the case that the wall of the beam pipe is not perfectly
conducting, part of the electromagnetic field excited by the
beam penetrates into the pipe wall. The penetration depth is
given by the skin depthds. The current induced in the wall
leads to heating due to the finite wall conductivity. Expres-
sions for the corresponding resistive-wall impedance for ar-
bitrary relativisticg0 and frequency can be found in the lit-
eraturef6–8g. Recently, Zimmermann and Oidef9g obtained
an expression for the resistive-wall impedance using the
wake field approach. Lowest order corrections to longitudi-
nal and transverse resistive-wall impedances have been de-
rived, discussed and compared with those well known ex-
pressions obtained for ultrarelativistic beams.

When the skin depth is larger than the wall thickness the
beam induced electromagnetic fields can penetrate through
the wall and the impedance depends on the structures outside
the pipe. In this situation, in addition to the impedance, de-
tailed calculations of the shielding effectiveness of the pipe

are necessary, also in order to estimate the currents that could
be induced in hardware components behind the pipe. The
shielding effectivenesssSEd of a conducting layer,
10 log10sPi /Ptd, is measured in decibelssdBd and defined as
the ratio of the transmitted powerPt to incident powerPi or
in terms of the electric fields SE=20 log10sEi /Etd ssee, e.g.,
Refs. f10–14gd. For commercial applications a shielding ef-
fectiveness greater than 40 dB is usually adequate for use in
electronics housingsFCC Class B requirementsd. Require-
ments for military applications are significantly higher, in the
range between 80 dB and 100 dB. For the shielding of beam
generated rf fields in accelerators the requirements depend on
the detailed accelerator environment and also on the beam
current. During the bunch compression foreseen in the pro-
posed heavy ion synchrotron SIS 100 at GSI Darmstadtf15g,
for example, peak currents approaching 100 A should be
reached. Assuming 40 dB shielding effectiveness of the
beam pipe still 1% of the induced fields or 1 A of the peak
image sdisplacementd current could in principle “leak
through the pipe.”

In accelerator physics literature the shielding of beam
generated rf fields by thin conducting layers was considered
in a number of worksssee, e.g.f16,17gd. The well known
ability of a thin layer of thicknessd less than the skin depth
ds to shield electromagnetic fieldsf18g produced by a par-
ticle beam was considered in Refs.f19,20g, where approxi-
mate expressions for the impedance and for the shielding
effectiveness of thin layers and also of wire cages in the limit
of low frequencies or highg0 were found.

The shielding by a beam pipe which is thin as compared
to the skin depth is of relevance for the SIS 18 heavy ion
synchrotron at GSI as well as for the design of the new SIS
100 as part of the FAIR projectf21g. The SIS 18 magnets can
be ramped with 10 T/s, the superconducting SIS 100 magnets
shall be ramped with 4 T/s. In order to reduce eddy current
effects, the stainless steel beam pipe of SIS 18 is only 0.3
mm thick. The skin depth at injections11.4 MeV/ud is 1 mm.
For the stainless steel or titanium beam pipe in the new SIS*Electronic address: helga@yu.edu.jo
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100 a thickness of a few 0.1 mm will be requiredf22g. Be-
cause SIS 100 will be a “cold” machine, the heating of the
thin pipe due to large image currents can be important.

The impedance and the shielding effectiveness of thin
beam pipes is also of importance for other fast ramping syn-
chrotron projects, like the rapid cycling 3 GeV synchrotron
for J-PARC f23g. Because of the relevance of the issue for
the design of high current ring machines it is important to
have closed form expressions for the resistive wall imped-
ance and for the shielding effectiveness covering the relevant
range of frequencies, beam energies and wall thicknesses. In
the present work these expression will be derived and com-
pared with approximations.

The paper is organized as follows: In Sec II, we present
the derivation of the electromagnetic fields associated with a
particle beam moving in a beam pipe of finite wall conduc-
tivities. Accounting for finite surface currents within the wall
by using the Leontovich boundary condition to find the fields
outside the metallic wall, we present in Sec. III a review on
the calculation of the total longitudinal coupling impedance
for a beam pipe with a thick wall and with finite wall con-
ductivity. The calculation of the longitudinal coupling im-
pedance will be done by directly matching the fields at the
inner wall surface. In Sec. IV the excited electromagnetic
fields and the corresponding coupling impedance will be ob-
tained and discussed in the presence of a metallic shield.
Shielding happens via a thin metallic cylindrical layer of
thicknessd, where expressions like resistive-wall impedance,
shielding effectiveness, and wall losses via attenuation of
fields behind a good conducting shielding layer will be cal-
culated. In Sec V we apply our results to the SIS heavy ion
synchrotron. Finally, we present our conclusions in Sec. VI.

II. MODEL EQUATIONS: ELECTROMAGNETIC FIELDS
IN A CYLINDRICAL PIPE

The general wave equations satisfied by the magneticBW

and electricEW fields in a conducting medium of conductivity
S, permittivity e0 and permeabilitym0 are obtained from
Faraday’s and Ampere’s lawsf7,24–26g, namely,

¹2BW srW,td − m0e0
]2BW srW,td

]t2
− m0S

]BW srW,td
]t

= − m0¹W 3 jWsrW,td,

s1d

¹2EW srW,td − m0e0
]2EW srW,td

]t2
− m0S

]EW srW,td
]t

= m0
] jWsrW,td

]t
+

¹W rcsrW,td
e0

, s2d

where rc and jW are the externalsfreed charge and current
densities, respectively, which obey the following continuity
equation:

]rcsrW,td
]t

+ ¹W · jWsrW,td = 0. s3d

Assuming that a particle beam in a form of circular lamina of
radiusa and an axially symmetric transverse charge distribu-
tion ssrd is moving in a cylindrical pipe of radiusb with a
constant longitudinal velocityyW =bcẑ along thez axis, the
beam charge and current densities are as follows:

rcsrW,td = ssrddsz− vtd, s4d

Q = 2pE
0

a

ssrdrdr , s5d

jWsrW,td = rcsrW,tdvW = ssrdbcdsz− vtdẑ, s6d

whereQ is the total charge associated with the charge distri-
bution rcsrW ,td. For a uniformly charged lamina, the surface
charge density distribution in the transverse direction iss
=Q/pa2. Accordingly, the Fourier time-transformed charge
and current densities in Eqs.s4d and s6d are

rcsr,z,vd =
Q

pa2bc
eikzz, s7d

jzsr,z,vd =
Q

pa2eikzz, s8d

wherev=kzv has been used andkz is the wave number in the
direction of beam propagation.

Due to the symmetry of the particle beamssourced under
consideration, only transverse-magneticsTMd cylindrical
waveguide modes couple to the propagating beam such that
Bz=0. All other field components are obtained from
Ezsr ,z,vd via Maxwell’s equations, whereEusr ,z,vd and
Brsr ,z,vd vanish identically because of the axial symmetry
of the beam. We assume normal mode solution for the Fou-
rier time transformed electric field such thatEzsr ,z,vd
=Ezsr ,vdeikzz. Upon Fourier transforming Eq.s2d in time and
in transverse space coordinates, and making use ofrcsr ,z,vd
and jzsr ,z,vd in Eqs. s7d and s8d, respectively, we get the
following equation for the longitudinal electric field compo-
nent within the beam for 0ø r øa,

F d2

dr2 +
1

r

d

dr
−

kz
2

g0
2GEzsr,vd = i

Q

pa2

kz

e0g0
2bc

, s9d

whereg0
−2=1−b2 was introduced. In the region of the beam

pipe, aø r øb, which is free of charges,rc=0, Eq. s9d will
be used to find the electric field in that region by setting its
right-hand side to zero. However, within a conducting metal-
lic region of conductivityS which includes no bulk free
charges, the following equation will be used to determine the
electric field within the metallic region, namely,

F d2

dr2 +
1

r

d

dr
−

kz
2

gI
2GEzsr,vd = 0, s10d
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1

gI
2 =

1

g0
2 − i

m0Sv

kz
2 , s11d

andds=Î2/m0Sv is the skin depth for the frequencyv. For
the TM modes in the cylindrical pipe with azimuthal sym-
metry, the electromagnetic field componentsBusr ,z,vd and
Ersr ,z,vd are needed for matching the solutions at the dif-
ferent interfaces involved in the problem under consideration
and are obtained fromEzsr ,z,vd via Maxwell equations as
follows:

Ersr,z,vd = − i
g2

kz

]Ezsr,z,vd
]r

, s12d

Busr,z,vd = Sb

c
+ i

m0bcS

v
DErsr,z,vd, s13d

whereg in Eq. s12d stands forg0 in the nonconducting re-
gions and forgI in regions of finite conductivity. In the fol-
lowing sections we will solve Eqs.s9d ands10d and then find
the corresponding expressions for the total coupling imped-
ance for different beam-pipe-wall structures. We also inves-
tigate the beam shielding effectiveness using a conducting
cylindrical shield of thicknessd. Results will be valid for
particle beams of arbitraryb and of finite size, for arbitrary
mode wavelengths, for a pipe wall of finite conductivity, and
at any pointr from the beam axis.

III. IMPEDANCE OF A THICK PIPE WALL

For an axially uniform transverse beam charge distribu-
tion in a beam pipe with a thick conducting wall, the beam-
pipe-wall structure essentially involves three regions where
Maxwell’s equations should be solved with appropriate
boundary conditions on the various interfaces. It is important
to find the unique solution for the electromagnetic field com-
ponents excited by the beam in a given beam-pipe structure
to account for the correct boundary conditions on metallic
surfaces and interfaces usually present in accelerators. For
perfectly conducting media such thatS=`, tangential and
normal field components vanish identically on a given per-
fectly conducting surface. On the other hand, when the con-
ductivity is large but finite, surface currents will flow on the
conducting surface leading to energy dissipation via Joule
heating produced in the wall. The net energy flux into the
conducting wall is nonzero and can be characterized by a
resistive-wall impedancef8g.

The conductivity of most metals is very large but finite,
and usually it is a function of temperaturef27g. At very low
temperatures, the conductivity may become infinite for direct
currents if the metal becomes superconducting. However, it
always remains finite for alternating currents. The character-
istic penetration depth of electromagnetic fields into the me-
tallic wall is the skin depthds which is in most cases smaller
than the beam-pipe radiusb and the thickness of the beam-
pipe wall. The fields close to the surface therefore behave
like plane wavesf27g, and accordingly, the tangential electric

sEW td and magnetic fieldsHW td components have to satisfy the

Leontovich boundary conditionf7,24–27g, namely,

EW t = Zmn̂ 3 HW t, s14d

Zm =Î jm0v

S
= s1 + jdÎm0v

2S
=

1 + j

Sds
, s15d

where n̂ is a unit normal to the surface pointing into the
metallic wall andZm is the complex surface impedance of the
metallic surface in electrical engineering conventions such
that j =−i f7g. Using physical conventions, the surface im-
pedanceZm will be such thatZm,1−i f28g, a result which is
a consequence of the Fourier transform in time using the
following physical conventions, namely,fsvd=e−`

` fstdeivtdt.

SinceEW t andHW t are continuous, their values outside the metal
near the surface must be related in the same way. It has been
pointed out by Leontovich that Eq.s14d may be used as a
boundary condition in determining the fields outside the
metal without considering the fields insidef29g.

Al-khateebet al. investigated the problem of longitudinal
space charge and resistive wall impedances in a smooth cy-
lindrical beam pipe using the Leontovich boundary condition
to relate the tangential field components at the metallic sur-
facef8g. At any point from the beam axis, an expression for
the total longitudinal coupling impedancesspace-charge and
resistive-walld was obtained from the volume integral over
the beam distribution. A second approach starting from the
flux of the Poynting vector at the pipe wall was also consid-
ered for the calculation of the resistive wall impedance
which was found to match the expression obtained from the
volume integral over the beam distribution forkzds!1. Us-
ing the wake potential approach, Zimmermann and Oide re-
cently obtained approximate expressions for the resistive-
wall impedance that are valid in the limitkzds!1 f9g, and
were found to match the results of Ref.f8g in this limiting
case.

For kzds!2/b2g0, which is mostly satisfied in metallic
regions, the resistive-wall impedanceZi

srwdsvd is given by the
following expressionf8g:

Zi
srwdsvd < s1 − id

nZ0bds
*

2Înb

4I1
2ss0ad

s2a2I0
2ss0bd

; s1 − id
nZ0bds

*

2Înb
gsrwd.

s16d

Here gsrwd is an effective resistive wall geometry factor,s0
=kz/g0 andds

* =Î2/m0Sv0 is the skin depth at the revolution
frequencyv0=bc/R. For all situations of practical interest in
ring accelerators we can approximateI1ss0ad<s0a/2,
I0ss0bd<1 and thereforegsrwd<1. Accordingly, Eq.s16d re-
duces into the well known expression for the resistive thick
wall impedancef7,30g.

In the following analysis, we directly solve Maxwell’s
equations in each region of the beam-pipe-wall structure for
TM cylindrical waveguide modes, and then match the fields
at the beam-vacuum and vacuum-wall interfaces. The Leon-
tovich boundary conditionsor the impedance boundary con-
ditiond accounts for the finite surface current at the metallic
interface. The longitudinal resistive-wall impedance in Eq.
s16d was derived by making use of the Leontovich boundary
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condition for calculating the electromagnetic field compo-
nents outside the metallic wall. Without making use of the
Leontovich boundary condition, a self-consistent expression
for the coupling impedance will be derived.

The z component of the electric field in each region will
satisfy the following differential equation:

F d2

dr2 +
1

r

d

dr
−

kz
2

g0
2GEz

s1dsr,vd = i
Q

pa2

kz

e0g0
2bc

, r ø a,

s17d

F d2

dr2 +
1

r

d

dr
−

kz
2

g0
2GEz

s2dsr,vd = 0, a ø r ø b, s18d

F d2

dr2 +
1

r

d

dr
−

kz
2

gI
2GEz

s3dsr,vd = 0, b ø r , `. s19d

The general solution for the electric field in thez direction is

Ezsr,vd =5A1I0ss0rd − i
Q

pa2e0kzbc
, 0 ø r ø a,

A2I0ss0rd + A3K0ss0rd, a ø r ø b,

A4K0ssrd, b ø r ,

s20d

wheresI=kz/gI and I0 andK0 are modified Bessel functions
of first and second kinds, respectively. Upon matching the
tangential field componentsEz and Hu at the beam surface
r =a and at the pipe wall atr =b, we obtain the following
coefficients:

A1 = i
Qs0a

pa2e0kzbc
fK1ss0ad + F−1I1ss0adg , s21d

A2 = i
Qs0a

pa2e0kzbc

I1ss0ad
F

, A3 = − i
Qs0a

pa2e0kzbc
I1ss0ad,

s22d

A4 = − i
Qs0a

pa2e0kzbc

h

F

I1ss0ad
K1ssIbd

fI1ss0bd + FK1ss0bdg,

s23d

F =

I0ss0bd + h
K0ssIbd
K1ssIbd

I1ss0bd

K0ss0bd − h
K0ssIbd
K1ssIbd

K1ss0bd
, h =

ve0g0

ig
I
sS− ive0d

.

s24d

We now calculate the corresponding total longitudinal cou-
pling impedance as a volume integral over the transverse
distribution of the beamf7g,

Zisr,vd =
1

Q2E
Vbeam

d3x8Ezsr8W ,vd jz
*sr8W ,vd. s25d

Substituting forjsr ,z,vd from Eq.s8d and making use of the
harmonic numbern defined such asn=kzR, the total longi-

tudinal impedance at any pointr from the beam axis be-
comes

Zisvd = − i
nZ0

2bg2gstotaldsr,a,b,d,kz,g,bd

; − inx0g
stotaldsr,a,b,d,kz,g,bd, s26d

gstotaldsr,a,b,d,kz,g,bd

=
4g0

2

kz
2a2F r2

a2 − 2
r

a
I1ss0adfK1ss0ad + F−1I1ss0adgG ,

s27d

where the total geometric factorgstotald has been introduced.
At the point r =a on the beam axis the geometric factor be-
comes

gstotald =
4g0

2

kz
2a2h1 − 2I1ss0adfK1ss0ad + F−1I1ss0adgj

=
4g0

2

kz
2a2F1 − 2I1ss0adSK1ss0ad +

K0ss0bd
I0ss0bd

I1ss0adDG
+

8g0
2I1

2ss0ad
kz

2a2 FK0ss0bd
I0ss0bd

− F−1G
; gsscdsS= `d + gsrwd. s28d

The geometry factorgsscdsS=`d characterizes the longitudi-
nal space-charge impedance in a perfectly conducting beam-
pipe wall, and the factorgsrwd results from the assumption of
a finite wall conductivity. It characterizes the longitudinal
resistive-wall impedance. For a perfectly conducting wall,
we haveh=0 and thengsrwd=0. Substituting forF from Eq.
s24d, the resistive-wall geometry factorgsrwd takes the fol-
lowing form:

gsrwd =
8g0

2I1
2ss0ad

kz
2a2 FK0ss0bd

I0ss0bd
− F−1G

=
8

s0
2a2

I1
2ss0ad

s0bI0ss0bd
K0ssIbd
K1ssIbd

h

I0ss0bd + h
K0ssIbd
K1ssIbd

I1ss0bd
.

s29d

Equations29d characterizes the resistive-wall impedance
for any metallic conductor of finite conductivityS. Contribu-
tions from arbitrary conduction and displacement current
densities to the resistive-wall impedance are included in Eq.
s29d. However, in the limit of very large conductivityS such
that kzds!1, the argument of the modified Bessel functions
K0ssIbd andK1ssIbd becomes very large. For large arguments,
K0 and K1 behave to first order equally so that the ratio of
K0ssIbd andK1ssIbd in Eq. s29d can be put to unity. Further,
in the limit kzds!1 corresponding to good conducting wall,
and by making use of Eq.s11d for gI, the parameterh takes
the following limiting value, namely,

AL-KHATEEB et al. PHYSICAL REVIEW E 71, 026501s2005d

026501-4



h =
ve0g0

igIsS− ive0d
<

1 + i

2

b2kz
2ds

s0
= s1 + id

b2g0kzds

2
.

s30d

Accordingly, the resistive-wall geometric factorgsrwd and
the corresponding impedance become

gsrwd <
8

s0
2a2

I1
2ss0ad

s0bI0ss0bd
1 + i

I0ss0bd
b2kz

2ds

2s0
, s31d

Zsrwdsvd = − i
nZ0

2bg2gsrwd = s1 − id
nZ0bds

*

2Înb

4I1
2ss0ad

s0
2a2I0

2ss0bd
,

s32d

where the skin depthds
* at the revolution frequency has been

used. Within the assumptions we introduced above, Eq.s32d
recover the expression for the resistive-wall impedance we
already obtained using the Leontovich boundary condition.

IV. LONGITUDINAL COUPLING IMPEDANCE FOR A
THIN WALL

In this section we calculate the coupling impedance and
the shielding effectiveness of a thin cylindrical pipe of thick-
nessd. We consider the case of a finite size beam of radiusa
inside a thin metallic cylindrical pipe of thicknessd extend-
ing from r =b to r =h=b+d. Outside the pipe forr .h is
vacuum.

For TM modes in azimuthally symmetric beam-pipe
structures, thez component of the electric field in the four
regions involved will satisfy the following differential equa-
tions:

F d2

dr2 +
1

r

d

dr
−

kz
2

g0
2GEz

s1dsr,vd = i
Q

pa2

kz

e0g0
2bc

, r ø a,

s33d

F d2

dr2 +
1

r

d

dr
−

kz
2

g0
2GEz

s2dsr,vd = 0, a ø r ø b, s34d

F d2

dr2 +
1

r

d

dr
−

kz
2

gI
2GEz

s3dsr,vd = 0, b ø r ø h, s35d

F d2

dr2 +
1

r

d

dr
−

kz
2

g0
2GEz

s4dsr,vd = 0, h ø r , `. s36d

The general solution for thez component of the electric field
is

Ezsr,vd =5A1I0ss0rd − i
Q

pa2e0kzbc
, 0 ø r ø a,

A2I0ss0rd + A3K0ss0rd, a ø r ø b,

A4I0ssIrd + A5K0ssIrd, b ø r ø h,

A6K0ss0rd, h ø r , `.

s37d

Requiring the continuity of the tangential field components
Ez and Hu at r =a, r =b, and r =h, we obtain the following
coefficients:

F =
I1ssIhdK0ss0hd + hK1ss0hdI0ssIhd

K1ssIhdK0ss0hd − hK1ss0hdK0ssIhd
, s38d

G =
1

h

I1ssIbd − FK1ssIbd
I0ssIbd + FK0ssIbd

, H =
I1ss0bd − G I0ss0bd
K1ss0bd + GK0ss0bd

,

s39d

A1 = − i
Q

pa2

s0a

e0kzbcH
fI1ss0ad − HK1ss0adg , s40d

A2 =
I1ss0ad

I1ss0ad − HK1ss0ad
A1, A3 = HA2, s41d

A4 =
I0ss0bd + HK0ss0b

I0ssIbd + HK0ssIbd
A2, A5 ; FA4, s42d

A6 =
FK1ssIhd − I1ssIhd

hK1ss0hd
A4. s43d

We now calculate the corresponding longitudinal impedance
as a volume integral over the transverse distribution of the
beam as follows:

Zsr,vd =
1

Q2E
Vbeam

d3x8EW sr8,z,vd · jW*sr8,z,vd

= − i
nZ0

2bg2gstotaldsr,a,b,d,kz,g,bd

; − inx0g
stotaldsr,a,b,d,kz,g,bd, s44d

where we introduced a generalized geometry factor
gsr ,a,b,d,kz,g,bd defined as follows:

gstotaldsr,a,b,d,kz,g,bd

=
4g0

2

kz
2a2F r2

a2 − 2
r

a
I1ss0adfK1ss0ad − H−1I1ss0adgG .

s45d

At the beam surfacer =a, the geometry factorgstotald takes on
the following form:
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gstotald =
4g0

2

kz
2a2F1 − 2I1ss0adSK1ss0ad +

K0ss0bd
I0ss0bd

I1ss0adDG
+

8g0
2

kz
2a2I1

2ss0adFK0ss0bd
I0ss0bd

+ H−1G
; g1 + g2, s46d

whereg1 is the geometric factor associated with the space
charge only for the case of a perfectly conducting thick wall
at r =b. The geometric factorg2 in Eq. s46d accounts for the
finite width and finite electric conductivity of the cylindrical
shield. Substituting forH, the geometry factorg2 can be
written in terms ofF as follows:

g2 =
8g0

2

kz
2a2

I1
2ss0ad

s0bI0ss0bd
1

I1ss0bd −
I0ss0bd

h

I1ssIbd − FK1ssIbd
I0ssIbd + FK0ssIbd

.

s47d

In the following subsections we derive analytic expressions
for the resistive-wall impedance and the transmission coeffi-
cient sshielding effectivenessd in the limit of well conducting
shielding layer.

A. Resistive-wall impedance for a thin wall

For the case of a very well conducting cylindrical shield
of finite thickness and fordskz!1, we have the following:

F <
e2sIh

p

K0ss0hd + hK1ss0hd
K0ss0hd − hK1ss0hd

, G < −
1

h

K0ss0hdtanhsId + hK1ss0hd
K0ss0hd + hK1ss0hdtanhsId

, s48d

g2 =
1

s0b

4I1
2ss0ad

s0
2a2I0

2ss0bd

s1 + idb2g0kzdsF1 + h
K1ss0hd
K0ss0hd

tanhsIdG
tanhsId + hSK1ss0hd

K0ss0hd
+

I1ss0bd
I0ss0bd

D + h2K1ss0hd
K0ss0hd

I1ss0bd
I0ss0bd

tanhsId

. s49d

The presence of a well conducting finite thickness cylindrical pipe results in the following contribution to the longitudinal
impedance, namely,

Z2svd = − i
nZ0

2bg2g2 = s1 − id
nZ0bds

*

2Înb

4I1
2ss0ad

s0
2a2I0

2ss0bd

1 + h
K1ss0hd
K0ss0hd

tanhsId

tanhsId + hSK1ss0hd
K0ss0hd

+
I1ss0bd
I0ss0bd

D + h2K1ss0hd
K0ss0hd

I1ss0bd
I0ss0bd

tanhsId

. s50d

For a cylindrical pipe of finite thicknesssdÞ0d, the imped-
anceZ2svd in Eq. s50d represents the resistive-wall imped-
ance, which is the total impedance minus the impedanceZ1
of a perfectly conducting beam pipe. We consider below two
limiting cases of Eq.s50d.

Assuming a thick very well conducting pipe such thatd
→` andkzds!1, Eq. s50d becomes

Z2
swalldsvd < s1 − id

nZ0bds
*

2Înb

4I1
2ss0ad

s0
2a2I0

2ss0bd
, kzds ! 1.

s51d

For h!1 or kzds!1 and for arbitrary pipe thicknessd, the
impedance in Eq.s50d takes on the following approximate
form:

Zswalldsvd < s1 − id
nZ0bds

*

2Înb

4I1
2ss0ad

s0
2a2I0

2ss0bd
cothsId. s52d

From Eq.s52d we see that the effect of a very well conduct-
ing pipe is to modify the well known resistive-wall imped-

ance by the factor cothsId. Such a modification by coshsId
of the resistive impedance or resistive geometric factor has
been reported at low frequencies in previous worksf31,32g,
and is well known in the transmission line theory in the case
of a thin conducting sheet with surface resistanceh f18g.
Geometry factors and the total impedance in the limiting
case of a very thin cylindrical shield take the following
forms, namely,

g2 =
8I1

2ss0adK0ss0bd
s0

2a2I0ss0bd
,

gstotald = g1 + g2 =
4g0

2

kz
2a2f1 − 2I1ss0adK1ss0adg , s53d

AL-KHATEEB et al. PHYSICAL REVIEW E 71, 026501s2005d

026501-6



Zi
stotdsvd = − i

nZ0

2bg0
2gstotald

= − i
nZ0

2bg0
2

4g0
2

kz
2a2f1 − 2I1ss0adK1ss0adg . s54d

Equations54d shows that the total longitudinal coupling im-
pedance without cylindrical pipesd→0d is purely imaginary.
We see from Eq.s54d that the impedance becomes also in-
dependent ofb. According to the beam-pipe structure treated
here and for vanishing thickness of the piped=0, the inter-
face atr =b becomes a virtual one so that it can be moved to
infinity without affecting the calculation results. The result in
Eq. s54d is consistent with that obtained in the case of a
smooth perfectly conducting beam pipe withb being moved
to infinity s“vacuum space charge impedance”d.

In the following we apply our results to the SIS. In Fig. 1
we plot the real part of the resistive wall impedancefEq.
s50dg as a function ofd for SIS parameters. As expected, the
thick wall limit, Eq. s16d, can be used ford.ds. For g0=2
andn=1 the skin depth is slightly larger than the wall thick-
nesss0.3 mmd in the dipoles. Ford,ds the real part of the
impedance is proportional to 1/d. In both regimes Eq.s52d
can be used to very good approximation. For very smalld
below 1mm the exact impedance decreases towards zero.
For SIS parameters the resistive wall impedance divided by

the harmonic number remains well below 10V. The total
sspace charge and resistive walld imaginary part of the wall
impedance is plotted in Fig. 2. Ford*1 mm the imaginary
part is dominated by the space charge impedance. For
smaller d the imaginary part of the total wall impedance
tends towards the vacuum result Eq.s53d.

B. Transmission coefficient and shielding effectiveness

We will now find an expression for the transmission co-
efficient by assuming a good conducting pipe such thatds
!1. We define the transmission coefficientt as the ratio of
A6 to A3 f19g. For good shielding, the coefficientt should be
as small as possible. The shielding effectiveness is defined as
SE=10 log10sutu−2d, where t is the ratio of the electricsor
magneticd field transmitted through the shield to the electric
sor magneticd field incident on the shield. Every 20 dB in-
crease in the SE represents a tenfold reduction in the elec-
tromagnetic field strength by passing through the shield. For
beam pipes or other rf shields in accelerators we assume here
a SE of 40 dBsutu=0.01d as a sufficiently good value. The
final classification of good shielding will depend on the de-
tailed accelerator environment and on the beam intensity.

For a beam pipe the transmission coefficient is obtained
from the electric fieldsfEq. s38dg as

t =
FK1ssIhd − I1ssIhd

hHK1ss0hd
I0ss0bd + HK0ss0bd
I0ssIbd + FK0ssIbd

=

Îb

h

s0bK1ss0hdI0ss0bd
1

coshsId +
K0ss0hd

hK1ss0hd
sinhsId +

I1ss0bd
I0ss0bd

Sh sinhsId +
K0ss0hd
K1ss0hd

coshsIdD . s55d

Equations55d is valid for any pipe thicknessd and for arbitraryb. In the special case of a conducting pipe and a skin depth
that is much larger than the wall thickness of the pipesd!dsd, Eq. s55d takes on the following form:

FIG. 1. Real partssolid lined of the resistive wall impedance for
n=1 andg0=2 as a function of the wall thicknessd. The parameters
are sSIS 18d C=216 m,a=1 cm, andb=10 cm.

FIG. 2. Absolute value of the imaginary partssolid lined of the
total sspace charge and resistive walld impedance forn=1 andg0

=2 as a function of the wall thicknessd. The parameters aresSIS
18d C=216 m,a=1 cm, andb=10 cm.
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t =Îb

h

1

s0bK1ss0hdI0ss0bd
1

1 − i
2d

b2g0
2kzds

2

K0ss0hd
K1ss0hd

+
I1ss0bd
I0ss0bd

Sb2g0kzd +
K0ss0hd
K1ss0hd

D . s56d

Further, in the limiting cases0b=kzb/g0!1 and s0h
=kzh/g0!1 corresponding to not too high frequencies or to
ultrarelativistic beam energies and forb<h, Eq. s56d be-
comes

t <
1

1 +
b2kz

2b

2
d + i

2bd

b2g0
2ds

2ln
kzb

g0

. s57d

Note that in the equivalent formula of Ref.f19g the first sign
in the denominator is a minus sign. The main contribution
for utu, however, comes from the terms2d/b2g0

2kzds
2d

3fK0ss0hd /K1ss0hdg in Eq. s56d which is much larger than
unity. Accordingly, forb@d, we have the following shield-
ing condition:

d

ds
@

b2g0kzds

2b
UK1ss0bd

K0ss0b
U . s58d

Equation s58d reduces into the condition d/ds

@ s 1
2

db2g0
2ds/ ulns0bu for low frequencies or high energies

s0b!1, a result which was derived previously by Gluckstern
and Zotterf19g.

V. SHIELDING EFFECTIVENESS IN SIS 18/100

The shielding of the beam generated rf fields by the beam
pipe is an important issue for the SIS high current operation
as well as for the design of the vacuum chambers for the
proposed SIS 100/300 synchrotronsf15g. In the SIS the
thickness of the stainless steel vacuum chamber in the di-
poles isd=0.3 mm. During the planned generation of in-

tense, shorts50 nsd U73 bunches peak currents exceeding 10
A will be reached in the SIS at a maximum energy of 1
GeV/u sg0<2.0d. A corresponding peak image current will
flow through the beam pipe. For insufficient shielding part of
this image current can flow through structures outside the
beam pipe, resulting in an undefined longitudinal impedance
and possibly in perturbations of the accelerator hardware.

The skin depthds
* at SIS injection energys11.4 MeV/ud is

1 mm, at 1 GeV/u the skin depth of 0.4 mm will still be
larger than the wall thickness in the dipoles. In the proposed
SIS 100 synchrotronds

* at injectionsg0=1.1d will be as large
as 1.5 mm, with a wall thickness in the dipoles of a few 0.1
mm. Therefore a detailed analysis of the shielding efficiency
of the beam pipe in the existing SIS as well as in the new SIS
100 is of great importance.

In Fig. 3 we plot the absolute value of the transmission
coefficient as a function of g0 for d=0.3 mm, S
=106 sVmd−1 sstainless steeld and for two different harmonic
numbers. The other SIS machine parameters of relevance are
2pR=216 m andb<0.1 m. Forn=1 or wave lengths corre-
sponding to the SIS circumference the transmission coeffi-
cient obtained from Eq.s55d reaches 1%sgood shielding of
40 dB as defined in Sec. IV Bd at g0<6. Forg0=2 we obtain
a sufficiently low value of<0.001 only. If we consider a
shorter wave length corresponding to the final length of com-
pressed bunchessn<20d we obtain an even lower value well
below 10−4, but here one has to take into account that the
compressed peak bunch current is more than 20 times higher.

The approximation Eq.s57d used in Ref.f19g overesti-
mates the transmission coefficient forn*10. For n=1 the
approximation Eq.s57d agrees exactly with Eq.s55d. Figure
4 shows the transmission coefficient forn=1, g0=2 and SIS
parameters as a function of the wall thicknessd. Values ex-

FIG. 3. Transmission coefficient vs relativisticg0 for the har-
monic numbersn=1 andn=20. The other parameters aresSIS 18d
C=216 m, b=10 cm, andd=0.3 mm. The dashed line represents
the transmission coefficient obtained from Eq.s57d.

FIG. 4. Transmission coefficient vsd for g0=2 andn=1. The
other parameters aresSIS 18d C=216 m andb=10 cm. The dashed
line represents the transmission coefficient obtained from Eq.s57d.
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ceeding 1% are obtained ford below 0.1 mm. The approxi-
mate expression Eq.s57d can be used ford&ds. The trans-
mission coefficient as a function ofd for g0=2, for stainless
steel and for the SIS 100 parameters is shown in Fig. 5. We
see that for stainless steel a wall thickness of a few 0.1 mm
might be sufficient in order to provide good shielding.

It is important to note that for the very smalld of the
order of a fewmm the situation corresponds, e.g., to a ce-
ramic beam pipe that is coated with a thin conducting film.
The effect of the ceramic pipe on the total impedance and on
the shielding effectiveness is very small. The impedance of
rf-shielding wires inside a ceramic pipe was studied by Wang
and Kurennoyf33g. They observed a weak dependence on
the dielectric constant of the ceramic pipe.

A ceramic beam pipe coated with a thinsfew mmd con-
ducting film of, e.g., CufS<53107 sVmd−1g could provide
transmission coefficients of the order of 10−3 for SIS 18. For
SIS 100 parameters we obtain a “good” shielding coefficient
of the order of 1% for standard operation.

We would like to point out that the radius of curvature has
been assumed to be very large compared to the transverse
dimensions of the vacuum chamber. In this case the curva-
ture effects are negligiblef34,35g and the beam-pipe system
under consideration has been replaced by infinitely long and
straight cylinder.

VI. SUMMARY

Closed form expressions for the resistive wall impedance
and for the shielding effectiveness of a thin conducting beam
pipe were derived. For the resistive wall impedance we com-
pared the exact expression with the well known approxima-
tions for thick and for thin walls. In addition we obtained an
approximate expression covering both regimes. In the limit
of a very thin wall d!ds we recover the vacuum space
charge impedance.

Concerning the shielding of beam induced rf fields by a
thin conducting pipe we showed that the approximate ex-
pression obtained also previously in Refs.f19,20g underesti-
mates the shielding effectiveness for the high mode numbers
that are relevant, e.g., during bunch compression and for a
wall thickness exceedingds. Application of the derived ana-
lytical results to the GSI synchrotrons SIS 18 and SIS 100
splannedd shows that a shielding effectiveness of 40 dB
sFCC Class Bd for “good shielding” is required. This choice
is somewhat arbitrary and will require more detailed inves-
tigations in the future.
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